092C.083		
092C.092		
		РA
		Ο
Data Source: Shoreline Type GeoBC Coastal Resource Shorezone Database, 2008 Base Information 1:20,000 GeoBC Terrain Resource Information Management (TRIM) Database 1:20,000 N N N E 0 0.25 0.5 1 S		
Legend		
 Unit Break Points Undefined Immobile Substrates 1 - Bedrock - CC 1-20 - VE 2 - Bedrock - CC 1-20 - E 3 - Bedrock/Boulder - CC 1-23, 32, 33 - SE 4 - Bedrock/Gravel - CC 1-23, 33 - SP 5 - Bedrock/Gravel - CC 1-23,33 - P/VP 	Mobile/Partially Mobile Substrates 6 - Sand & Gravel - CC 24-26, 32 - SP 7 - Sand & Gravel - CC 24-26,32 - VP/P 8 - Estuary or Sand/Mud - CC 27-31 - VP/P/SP 9 - Sediment - CC 21 - 30 - SE/E Current Dominated 10 - Bedrock or Sediment - CC 34 - VP/P/SP Tidal Lagoon 11 - Bedrock or Sediment - CC 35 - VP/P/SP 	The Habitat Type been mapped. The features. Each Habitat Type Semi-exposed, In biobands and indi How is Habitat Type To determine the 1. records the ot 2. assigns a bio-
CC Type Rock Shore Types - characterized by a lack of clastic sediments such as gravel or sa 1 Rock Ramp, Wide 2 Rock Platform Wide 3 Rock Cliff Narrow 4 Rock Ramp, Narrow 5 Rock Platform Narrow Rock and Sediment Shore Types - rock and pockets of clastic sediments 6 Ramp with Gravel Beach, Wide 7 Platform with Gravel Beach, Wide 8 Cliff with Gravel Beach 9 Ramp with Gravel Beach, Narrow 10 Platform with Gravel Beach, Narrow	СС Туре	3. □reviews the ph 4. □ assigns the H The Habitat Type detailed across-sl Habitat Type is a • □ the biobands o • □ the wave expos • □ the substrate ty Legend Definition
10 Platform with Gravel Beach, Narrow 11 Ramp with Sand and Gravel Beach, Wide 12 Platform with Sand and Gravel Beach, Wide 13 Cliff with Sand and Gravel Beach 14 Ramp with Sand and Gravel Beach, Narrow 15 Platform with Sand and Gravel Beach, Narrow 16 Ramp with Sand Beach, Wide 17 Platform with Sand Beach, Wide	31 Estuaries Man-Made Materials 32 Man-made, permeable 33 Man-made, impermeable Current Dominated 34 Channel 35 Tidal Lagoon	CC - Coastal Clas Wave Exposure E - Exposed - Ver VE - Very Expose SE - Semi Expose

17Platform with Sand Beach, Wide18Cliff with Sand Beach19Ramp with Sand Beach, Narrow20Platform with Sand Beach, Narrow

P GEORGE + + + FRASER + 936 , +₊ ++ + + Humphries Reef

I F I С

C E A N

----+ Islands 092C.093 +⁺ + Janson + + Island + + + Sykes Reef _ **≠**+ \$ \$ + Heddington Reef + 🌨 + Starlight Reef Mara Rock +

Chrow

С

092C.083

Shoreline Habitat

t Type provides a simplified picture of the "look" of the unit overall, based on the detailed biophysical attributes that have ed. The Habitat Type category is a summary of the observations of both the unit's biologial and geomorphological at Type has a definition that includes the typical substrate, wave exposure and biobands. For example, for the ed, Immobile substrate Habitat Type, part of the definition of that class is a certain combination of the most likely ind indictor species present at a bedrock shoreline with no mobile sediment present.

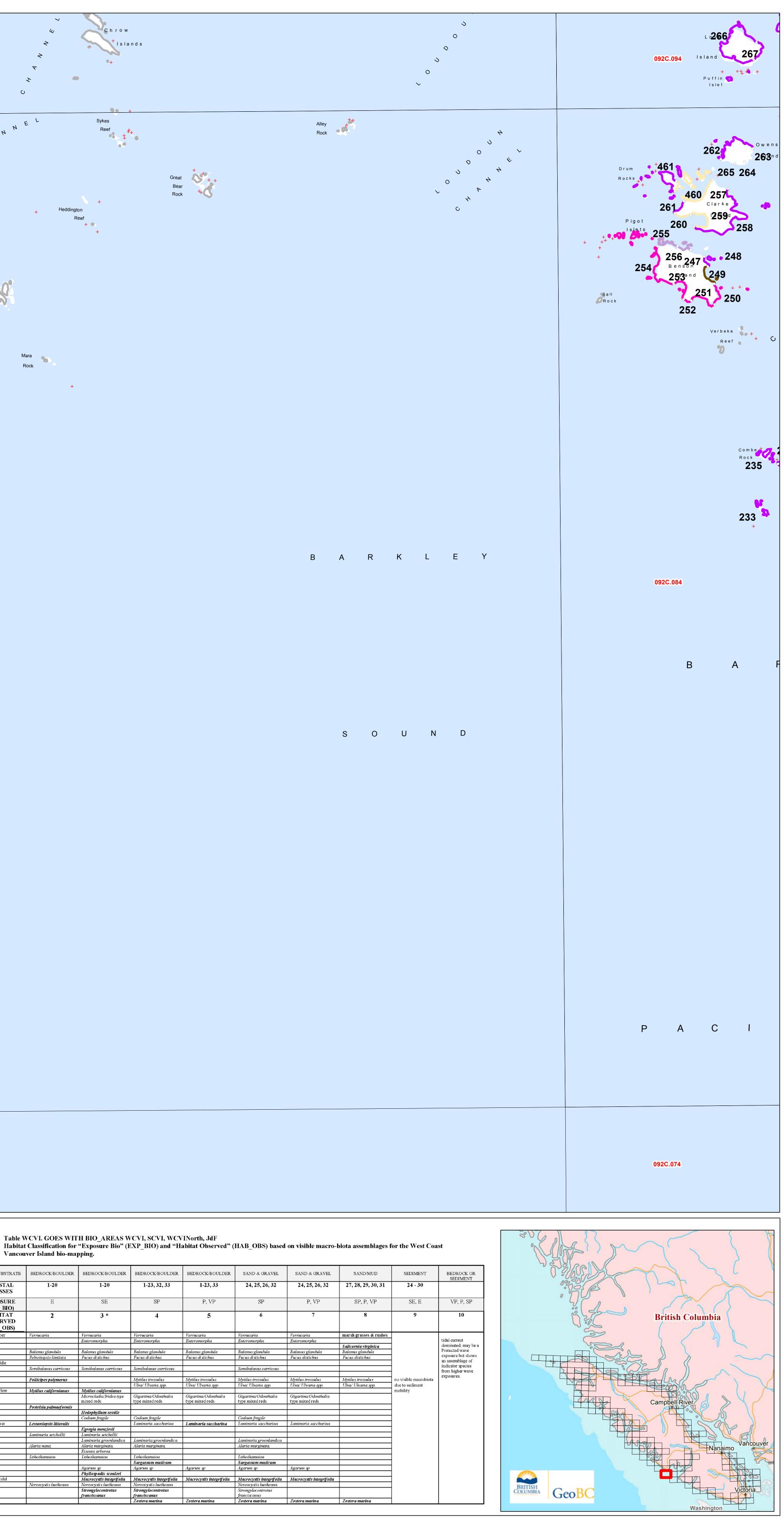
itat Type determined? at Type has typical biological features (including both an indicator species list and typical associated biobands). the biservations of the biobands in the unit and looks for indicator species,

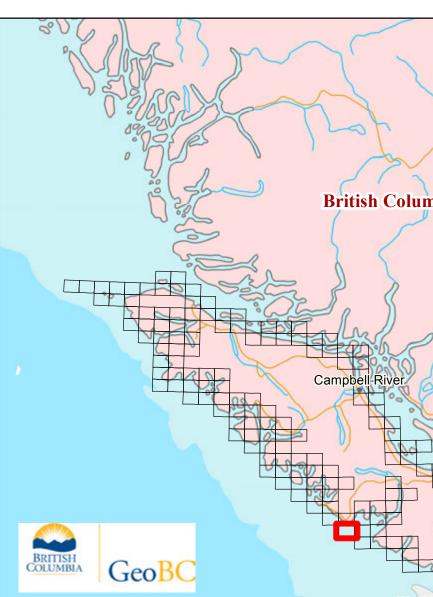
a bio-(wave) exposure category, the physical mapped information, and the Habitat Type that best describes the unit.

t Type is based on the whole unit and is similar to the physical mappers use of the 'Coastal Class' category, in that the ross-shore data are summarized into one attribute. The simplified category describes the features of the whole unit.

e is a summary of the biophysical classification of the whole shore unit, based on:

nds observed, exposure as indicated by the bands, and rate types in the unit.


finitions al Classification number


E - Exposed - Very high wave exposure, open ocean swellsm usually fetches >500km VE - Very Exposed - Extreme high wave exposure SE - Semi Exposed - High wave exposure, open shorelines, areas between fully exposed and more sheltered, usually fetches 50 to 500km P - Protected - Low wave expsoure, sheltered inlets, usually fetches less than 10km SP - Semi Protected - Moderate wave expsoure, partly sheltered, usually fetches 10-50km

VP - Very Protected - Very low wave exposure, fethces < 1km, sheltered anchorages at heads of bays and inletes

Table WCVI. GOES WITH BIO_AREAS WCVI, SCVI, WCVINorth, JdF

MAJOR SUBSTRATE	BEDROCK/BOULDER	BEDROCK/BOULDER	BEDROCK/BOULDER	BEDROCK/BOULDER	SAND & GRAVEL	SAND & GRAVEL	SAND/MUD	SEDIMENT	BEDROCK OR SEDIMENT
COASTAL CLASSES	1-20	1-20	1-23, 32, 33	1-23, 33	24, 25, 26, 32	24, 25, 26, 32	27, 28, 29, 30, 31	24 - 30	JEDIMENT
EXPOSURE (EXP BIO)	Е	SE	SP	P, VP	SP	P, VP	SP, P, VP	SE, E	VP, P, SP
HABITAT OBSERVED (HAB_OBS)	2	3 *	4	5	6	7	8	9	10
upper	Verrucaria	Verrucaria	Verrucaria	Verrucaria	Verrucaria	Verrucaria	marsh grasses & rushes		
••		Enteromorpha	Enteromorpha	Enteromorpha	Enteromorpha	Enteromorpha		1	tidal current
							Salicornia virginica		dominated; may be a
	Balanus glandula	Balanus glandula	Balanus glandula	Balanus glandula	Balanus glandula	Balanus glandula	Balanus glandula	1	Protected wave
	Pelvetiopsis limitata	Fucus distichus	Fucus distichus	Fucus distichus	Fucus distichus	Fucus distichus	Fucus distichus	1	exposure but shows
middle								1	an assemblage of
	Semibalanus carriosus	Semibalanus carriosus	Semibalanus carriosus		Semibalanus carriosus				indicator species from higher wave
									exposures.
	Pollicipes polymerus		Mytilus trossulus	Mytilus trossulus	Mytilus trossulus	Mytilus trossulus	Mytilus trossulus	no visible macrobiota	exposures.
			Ulva/ Ulvaria spp.	Ulva/ Ulvaria spp.	Ulva/ Ulvaria spp.	Ulva/ Ulvaria spp.	Ulva/ Ulvaria spp.	due to sediment mobility	
mid/low	Mytilus californianus	Mytilus californianus							
		Microcladia/Iridea type mixed reds	Gigartina/Odonthalia type mixed reds	Gigartina/Odonthalia type mixed reds	Gigartina/Odonthalia type mixed reds	Gigartina/Odonthalia type mixed reds			
	Postelsia palmaeformis							1	
		Hedophyllum sessile							
		Codium fragile	Codium fragile		Codium fragile				
lower .	Lessoniopsis littoralis		Laminaria saccharina	Laminaria saccharina	Laminaria saccharina	Laminaria saccharina			
		Egregia menziesii							
	Laminaria setchellii	Laminaria setchellii							
		Laminaria groenlandica	Laminaria groenlandica		Laminaria groenlandica				
	Alaria nana.	Alaria marginata.	Alaria marginata.		Alaria marginata.				
		Eisenia arborea							
	Lithothannion	Lithothamnion	Lithothamnion		Lithothamnion				
			Sargassum muticum		Sargassum muticum				
		Agarum sp	Agarum sp	Agarum sp	Agarum sp	Agarum sp			
		Phyllospadix scouleri						l	
subtidal		Macrocystis integrifolia	Macrocystis integrifolia	Macrocystis integrifolia	Macrocystis integrifolia	Macrocystis integrifolia			
	Nereocystis luetkeana	Nereocystis luetkeana	Nereocystis luetkeana		Nereocystis luetkeana				
		Strongylocentrotus	Strongylocentrotus		Strongylocentrotus				
		franciscanus	franciscanus		franciscanus				
		1	Zostera marina	Zostera marina	Zostera marina	Zostera marina	Zostera marina	1	1

